◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
创业资讯门户网站
今天给各位分享什么是平行线的知识,其中也会对什么是垂线什么是平行线进行解释,如果能碰巧解决你现在面临的问题,别忘了关注佰雅经济,现在开始吧!
1、在初中阶段,定义为在同一平面内,永不相交的两条直线叫平行线。
2、在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的。
平行线的平行公理
1、经过直线外一点,有且只有一条直线与已知直线平行。
2、两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。
注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等,同旁内角互补。
扩展资料:
平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线。
平行线公理是几何中的重要概念,欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。
而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
性质:
平行线的性质与平行线的判定不同,平行线的判定是由角的数量关系来确定线的位置关系,而平行线的性质则是由线的位置关系来确定角的数量关系,平行线的性质与判定是因果倒置的两种命题。
对平行线的判定而言,两直线平行是结论,而对平行线的性质而言,两直线平行却是条件。已知两直线平行。由平行线得到角的关系是平行线的性质,包括:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
一、平行线定义:定义
在同一平面内,永不相交的两条直线叫做平行线。平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。
【基本定义】
在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的。
二、平行线的性质
正平行线的性质与平行线的判定不同,平行线的判定是由角的数量关系来确定线的位置关系,而平行线的性质则是由线的位置关系来确定角的数量关系,平行线的性质与判定是因果倒置的两种命题。对平行线的判定而言,两直线平行是结论,而对平行线的性质而言,两直线平行却是条件。已知两直线平行。由平行线得到角的关系是平行线的性质,包括:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。[1]
三、平行线的平行公理
1.经过直线外一点,有且只有一条直线与已知直线平行。
2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。
注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等 同旁内角互补
4、平行线的判定
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
如图,CD∥EF
4、在同一平面内,垂直于同一直线的两条直线互相平行。
5、在同一平面内,平行于同一直线的两条直线互相平行。
6、同一平面内永不相交的两直线互相平行。
什么是平行线的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是垂线什么是平行线、什么是平行线的信息别忘了在本站进行查找喔。
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。