◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
创业资讯门户网站
本篇文章给大家谈谈惯性矩公式,以及圆的截面惯性矩公式对应的知识点,希望对各位有所帮助,不要忘了收藏佰雅经济喔。
惯性矩计算公式如下:
1、矩形:I=b*h^3/12。
2、三角形:I=b*h^3/36。
3、圆形:I=π*d^4/64。
4、环形:I=π*D^4*(1-α^4)/64;α=d/D。
惯性矩通常被用作描述截面抵抗弯曲的性质。惯性矩的国际单位为(m4)。即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
惯性矩应用
结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕X轴的截面抗弯刚度。
结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。

常见截面的惯性矩公式
矩形:
其中:b—宽;h—高
三角形:
其中:b—底长;h—高
圆形:
其中:d—直径
圆环形:
其中:d—内环直径;D—外环直径
扩展资料
截面惯性矩指截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。截面惯性矩是衡量截面抗弯能力的一个几何参数。任意截面图形内取微面积dA与其搭配z轴的距离y的平方的乘积y²dA定义为微面积对z轴的惯性矩,在整个图形范围内的积分则称为此截面对z轴的惯性矩Iz。
截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。
参考资料:百度百科-截面惯性矩
极惯性矩常用计算公式:Ip=?Aρ^2dA
矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12
三角形:b*h^3/36
圆形对于圆心的惯性矩:π*d^4/64
环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D
扩展资料:
惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。惯性矩的国际单位为(m4)。即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
结构构件惯性矩Ix:
结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕X轴的截面抗弯刚度。
结构构件惯性矩Iy:
结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。
惯性矩计算公式是:Iz=3.14d4/64。
d后面的4表示4次方。
极惯性矩:由于ρ^2 = x^2 + y^2,故可得极惯性矩与截面专二次轴距内有如上左图所属示的数学关系,即截面对于任意一点的极惯性矩,等于该截面对以该点为原点容的任意一组正交坐标系的截面二次轴距之和。
静矩:
静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=∫ydA。
静矩就是面积矩,是构件的一个重要的截面特性,是截面或截面上某一部分的面积乘以此面积的形心到整个截面的型心轴之间的距离得来的,是用来计算应力的。
注意:
惯性矩是乘以距离的二次方,静矩是乘以距离的一次方,惯性矩和面积矩(静矩)是有区别的。
关于惯性矩公式和圆的截面惯性矩公式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注佰雅经济。
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。