◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
创业资讯门户网站
本篇文章给大家谈谈两向量共线,以及两向量共线公式对应的知识点,希望对各位有所帮助,不要忘了收藏佰雅经济喔。
两向量共线公式:
(1)a,b共线则a=kb(k∈R,且k≠0);
(2)向量a=(x1,y1);b=(x2,y2);a//b,则x1*y2=x2*y1。
方向相同或相反的非零向量叫平行向量。表示为a∥b任意一组平行向量都可移到同一直线上,因此平行向量也叫向量共线
如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。
一、证明:
(1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。
(2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。
(3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。
二、向量m=(a,b),向量n=(c,d),两者共线时 ad=bc
量共线的充要条件:若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数).向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使 λa+μb=0更一般的,平面内若a =(p1,p2) b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1。
扩展资料:
一、推论1
两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。
证明:
(1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。
(2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。
证毕。
二、推论2
两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。
证明:
(1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。
(2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。
证毕。
参考资料来源:百度百科-共线向量基本定理
假设有两个向量为a和b,则向量a和向量b都不等于0;假设向量a的坐标为括号内的x1,y1,向量b的坐标为括号内的x2,y2;则向量a和向量b的坐标满足x1乘以y2等于y1乘以x2。 以上即为两个向量共线的充要条件。
两个向量共线是指表示它们的有向线段互相平行,
通俗的说就是同向或反向的向量叫共线向量,又叫平行向量。
有一个特殊情况,就是规定:零向量可以与任何向量共线。
定理:向量
a、b
(b≠0)
共线的充要条件是存在实数
λ
使
a
=
λb
。
所以,要证明两个向量共线,只须证明它们之间有一个倍数关系即可。
例:已知
e1、e2
是不共线的单位向量,向量
a
=
e1+2e2,b
=
-2e1+e2,
c
=
4e1+3e2
,求证明:a
与
b+c
共线。
证明:因为
b+c
=
(-2e1+e2)+(4e1+3e2)
=
2e1+4e2
=
2(e1+2e2)
=
2a
,
所以
a
与
b+c
共线
。
共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。
性质:若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0
扩展资料
两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。
证明:
1、充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。
2、必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。
参考资料来源:百度百科-共线向量基本定理
向量m=(a,b),向量n=(c,d),两者共线时 ad=bc
量共线的充要条件:
若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数).
向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使 λa+μb=0
更一般的,平面内若a =(p1,p2) b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1
资料拓展
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。
在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
两向量共线的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于两向量共线公式、两向量共线的信息别忘了在本站进行查找喔。
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。