◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
创业资讯门户网站
本篇文章给大家谈谈n维,以及n维海德对应的知识点,希望对各位有所帮助,不要忘了收藏佰雅经济喔。
线性代数中“n维向量”中的“n维”是指向量的元素个数为n。比如,三维向量的形式为α=(x1,x2,x3),五维向量的形式为β=(x1,x2,x3,x4,x5)。
向量,指具有大小和方向的几何对象,可以形象化地表示为带箭头的线段:箭头所指,代表向量的方向、线段长度,代表向量的大小。
扩展资料
重要定理
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
矩阵非奇异(可逆)当且仅当它的行列式不为零。
矩阵非奇异当且仅当它代表的线性变换是个自同构。
矩阵半正定当且仅当它的每个特征值大于或等于零。
是普通平面和空间向量概念的推广,是一种特殊的矩阵。
由数a1,a2....an组成的有序数组,称为n维向量,简称为向量。向量通常用斜体希腊字母等表示。在一个向量组中,若有一个部分向量组线性相关, 则整个向量组也必定线性相关,反之不成立。推论一个线性无关的向量组的任何非空的部分向量组都 线性无关。
在机器学习过程中,我们会经常遇到向量、数组和矩阵这三种数据结构,下面就这三种数据结构做一次详细的分析。同时我们时常困惑于维度,n维向量,n维数组,矩阵的维度,本文着重就这一方面进行分析。
解析几何中,我们把“既有大小又有方向的量”叫作向量,并把可随意平行移动的有向线段作为向量的几何形象。
在引进坐标系以后,这种向量就有了坐标表示式— — n个有次序的实数,也就是n维向量。因此,当 n ≤ 3 时,n维向量可以把有向线段作为几何形象,但当n>3 时,n 维向量就不再有这种几何形象,只是沿用一些几何术语罢了。
3维向量空间:
在点空间取定坐标系以后,空间中的点P(x,y,z)与3 维向量 r =(x,y,z)T 之间有一一对应的关系,因此,向量空间可以类比为取定了坐标系的点空间。在讨论向量的运算时,我们把向量看作有向线段;在讨论向量集时,则把向量r 看作以r 为向径的点P,从而把点P 的轨迹作为向量集的图形。
在同济大学线性代数第六版中,有这样一句话,矩阵的列向量组和行向量组都是只含有限个向量的向量组;反之,一个含有限个向量的向量组总可以构成一个矩阵。因此我们可以推断,列向量是可以多维的,但是它的深度只能是一维(这里的深度是相对于矩阵和数组而言的,而这里的维度是指的空间的维度,这是两个不同的概念)。
n维单位行向量(a1,a2,a3,......an),它的转置就是n维单位列向量。
n维单位列向量,分别是
(1,0,0,...,0)^T
(0,1,0,...,0)^T
(0,0,1,...,0)^T
(0,0,0,...,1)^T
性质是,各分量除了1个1之外,其余都是0。
符号
为了简化书写,方便排版,列向量经常被写成行向量加上一个转置符号T的形式。为了进一步的简化,有些学者把行向量与列向量都写成行的形式,不过行向量的元素用空格隔开,而列向量的元素则用逗号隔开。
是指向量的元素个数为n。比如,三维向量的形式为α=(x1,x2,x3),五维向量的形式为β=(x1,x2,x3,x4,x5)。
向量,指具有大小和方向的几何对象,可以形象化地表示为带箭头的线段:箭头所指,代表向量的方向、线段长度,代表向量的大小。
向量可以用有向线段来表示:
有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
在2维空间中,两个2维向量构成的的行列式的值,等同于两个向量组成的平行四边形面积大小。也就是说,在2维空间中,两个2维向量构成的的行列式的值,等同于两个2维向量的【叉积】。
n维的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于n维海德、n维的信息别忘了在本站进行查找喔。
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。