创业资讯门户网站

网站地图

网站首页 / 创业点子 / 正文

偶函数性质(偶函数性质怎么用)

更新时间:2025-09-09 11:04:39 点击:304

本篇文章给大家谈谈偶函数性质,以及偶函数性质怎么用对应的知识点,希望对各位有所帮助,不要忘了收藏佰雅经济喔。

本文目录一览:

偶函数有哪些性质?

奇函数性质:

1、图象关于原点对称

2、满足f(-x)

=

-

f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质:

1、图象关于y轴对称

2、满足f(-x)

=

f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

奇函数与偶函数的所有性质及特征?

一般地,设A

B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A到B为从集合A到集合B的一个函数,其中x叫做自变量,x的取值范围A叫做函数的定义域.

(要明白定义域是集合的一种形式,这一形式的集合由元素组成,每一个元素都是数,都可以用x表示,x叫做自变量,它是主动变化的,相应就有被动变化的因变量y,因变量y组成了集合,叫做值域.)

奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.

偶函数:如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.

(奇函数和偶函数可以这样理解:首先,函数具有奇偶性,定义域必须关于0对称.其次,当自变量取定义域中一对相反实数时,函数值总相等的就是偶函数;当自变量取定义域中一对相反实数时,函数值也总相反就是奇函数.从图象上看,图象关于y轴对称的就是偶函数,图象关于原点(0,0)对称的就是奇

偶函数的性质是什么?

1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x),如y=x*x;y=cosx。

2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。

3、偶函数的定义域D关于原点对称是这个函数成为偶函数的必要非充分条件。

例如:f(x)=x^2,x∈R(f(x)等于x的平方,x属于一切实数),此时的f(x)为偶函

数。f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2x≤2),此时的f(x)不是偶函数。

判定方法

1、代数判断法

主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数; f(-x)=f(x)的是偶函数。

2、几何判断法

关于原点对称的函数是奇函数,关于Y轴对称的函数是偶函数。

如果f(x)为偶函数,则f(x+a)=f[-(x+a)]

但如果f(x+a)是偶函数,则f(x+a)=f(-x+a)

偶函数性质的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于偶函数性质怎么用、偶函数性质的信息别忘了在本站进行查找喔。

标签:

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

最近发表